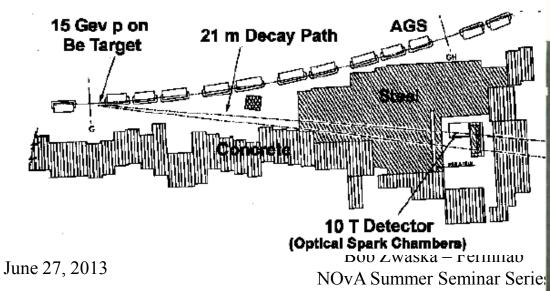
#### How to Make a Neutrino Beam

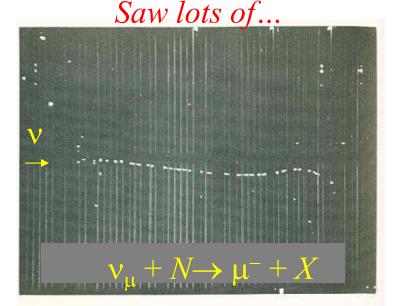
Robert Zwaska Fermilab

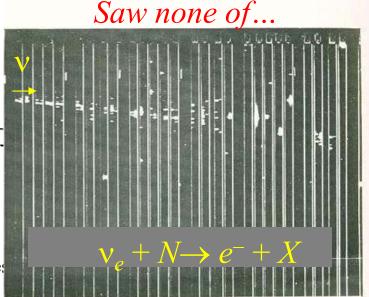
June 27, 2013 NOvA Summer Seminar Series

#### Outline

- Basics of neutrino production
  - Focus on areas relevant to Fermilab
- Walkthrough of NuMI a representative, modern neutrino beam
- Challenges for neutrino beams
  - ➤ Intensity and Precision
- Alternative techniques


#### The First Neutrino "Beam"


 In 1957, Brookhaven AGS and CERN PS first accelerators intense enough to make v beam

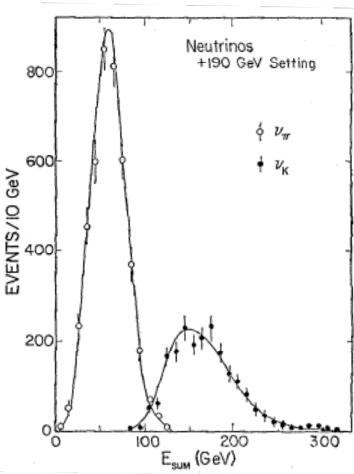

$$p + Be \rightarrow \pi^+ + X$$
,  $\pi^+ \rightarrow \mu^+ \nu$ 

• 1962: Lederman, Steinberger, Swartz propose experiment to see

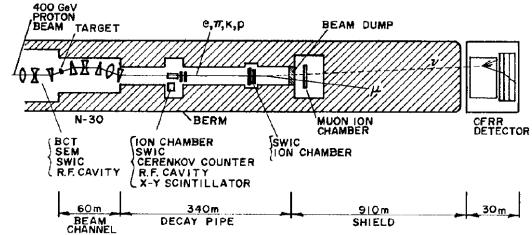
$$\nu_{\mu} + N \rightarrow \mu^{-} + X$$
 (Phys.Rev.Lett. 9, 36 (1962))





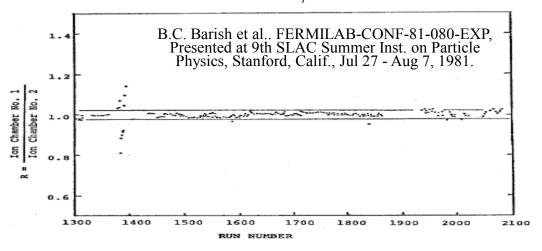



# Why a Beam?


- Natural sources exist but they are very weak and not necessarily well understood
  - Solar and atmospheric neutrinos only understood once oscillations were established and well understood
    - Moving from observation to experiment
  - > Supernovae are hard to come by
- Artificial beams are controlled and intense
  - > We decide when, where, and how the beam is generated
  - > Detectors are placed strategically
  - ➤ I'll concentrate on beams, but reactors and other non-beam artificial sources contribute similarly
- Applications:
  - > Today neutrino oscillation is the first focus
  - > Probe of nuclear structure
  - > Observation of the neutral current
  - > Demonstration of neutrino flavor (muon, tau)
  - ➤ Measurement of weak mixing angle

#### Dichromatic NBB

• Modern neutrino beam previous to oscillation searches




•B.C. Barish et al.. FERMILAB-CONF-78-046-EXP, Presented at 3rd Int. Conf. on New Results in High Energy Physics, Nashville, Tenn., Mar 6-8, 1978
•P. Limon et al, FNAL-Pub-73/66



• Channel accepts  $\Delta p/p \sim 5-10\%$ 

$$E_{\nu} pprox rac{(1 - rac{m_{\mu}^2}{m_{\pi,K}^2}) E_{\pi,K}}{1 + \gamma^2 \theta^2}$$



#### Sources of Neutrinos

- Weak Decays
  - Elements, pions, muons...
- Choose energy scale to make muons, tau
  - > Charged current interaction best way to measure flavor
- Pion decay is optimal
  - > Simple, two body, pure muon-neutrino source
- Kaon & Muon decay often come along for the ride
  - ➤ Produce backgrounds of electron-neutrinos
  - ➤ More complicated decay channels and kinematics
  - > Depends on history (polarization)
- Tau neutrinos production require much heavier parents
  - > Charm is the best source

# Pion Decay

- Neutrinos produced at random direction in pion rest frame
  - ➤ Booster in the direction of the beam
  - ➤ Ultimate energy determined by the decay angle with respect to the boost, in the lab:

$$E_{\nu} \approx E_{\pi} \frac{1 - m_{\mu}^2 / m_{\pi}^2}{1 + \gamma^2 \theta^2} \approx \frac{0.43 E_{\pi}}{1 + \gamma^2 \theta^2}$$

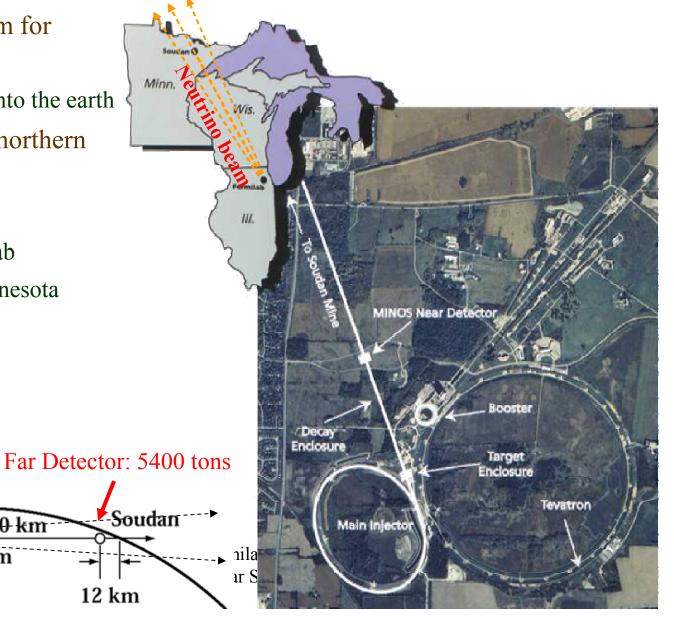
- ➤ Muon carries the balance of the energy
- Flux is also affected such that the beam is strongly directed in the direction of the pion velocity:

$$\frac{dN}{d\Omega} \approx \frac{1}{4\pi} \left( \frac{2\gamma}{1 + \gamma^2 \theta^2} \right)^2$$

• All two-body decays have this functional form. Three body-decays are boosted in the same way, but are complicated by the decay kinematics

#### The NuMI Facility

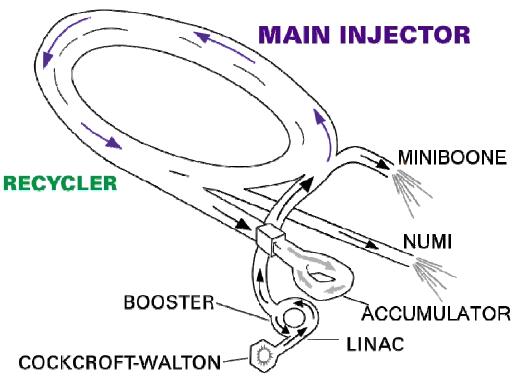
- High-power neutrino beam for oscillation experiments
  - ➤ Beam tilted 3 3° down into the earth
- Neutrino beam travels to northern Minnesota
  - > 735 km baseline
  - > Intense source at Fermilab
  - ➤ Oscillated source in Minnesota
- Commissioned in 2004


Near Detector: 980 tons

10 km

735 km

• Operating since 2005


Fermilab



#### Protons as Raw Material

- •120 GeV protons from the Main Injector
  - NuMI Designed for as many as  $4 \times 10^{13}$  protons/pulse
    - 10 μs pulse every 1.9 s
    - 400 kW design power
- Shared proton capability
  - ➤ Antiproton Source (collider)
  - ➤ MiniBooNE beam
- •Being upgraded for NOvA
  - ➤ Use of the Recycler to reduce cycle time
  - >700 kW: as much as  $5 \times 10^{13}$  protons/pulse every 1.333 s

#### FERMILAB'S PROTON COMPLEX

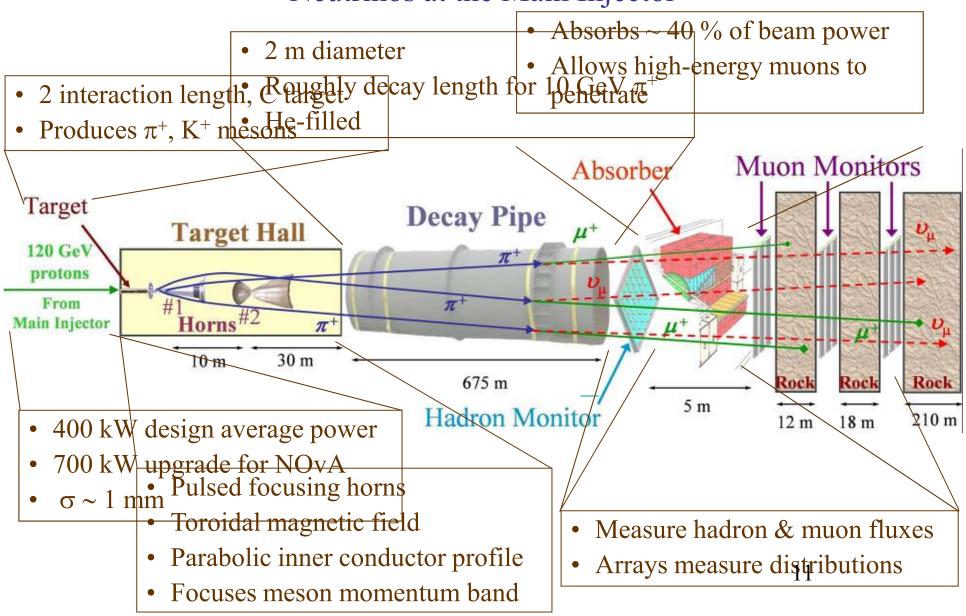


#### Users

- MINOS Main Injector Neutrino Oscillation Search
  - ➤ Initial user built concurrently with NuMI
  - > Muon-neutrino disappearance search

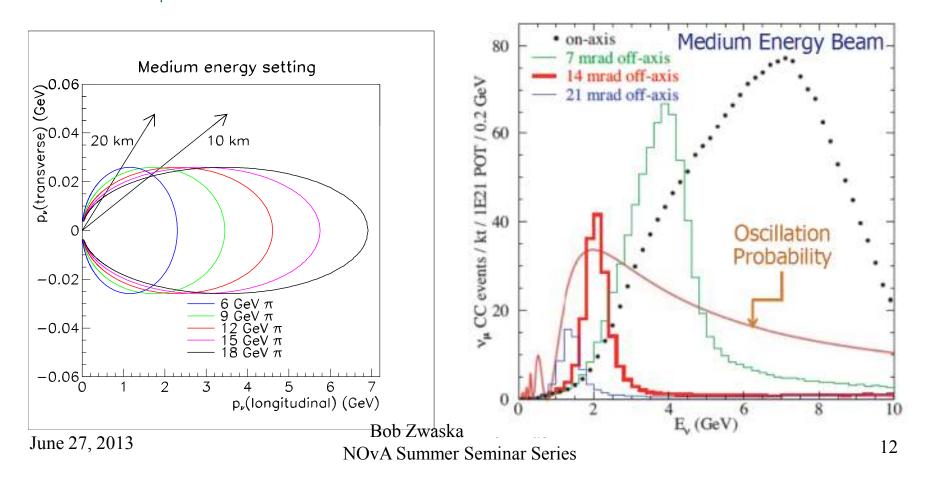


- MINERvA experiment in operation
  - > Sited in MINOS Fermilab hall
  - Extensive portfolio of high-statistics measurements




- NOvA experiment in construction
  - > New far detector in northern Minnesota
  - > New near detector in new underground hall
  - Electron-neutrino appearance search




#### The NuMI Beam

"Neutrinos at the Main Injector"

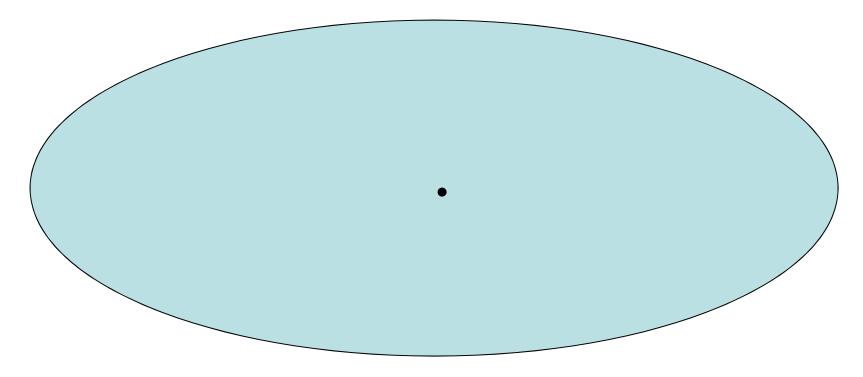


#### Off-Axis Beam

- Technique used by T2K, NOvA (first proposed by BNL)
  - > Fewer total number of neutrino events
  - ➤ More at one narrow region of energy
  - $\triangleright$  For  $v_{\mu}$  to  $v_{e}$  oscillation searches, backgrounds spread over broad energies



# Challenges to Conventional Neutrino Beams


- Proton beams
- Targets
- Horns / focusing
- Precision
- Instrumentation
- Hadroproduction Modeling & Experiments
- Radiation Protection
- Radionuclide handling

# Challenge: Proton Beam

- Increased beam power translates directly into neutrinos
- However, there are limitations on the beam delivered:
  - ➤ Spot size: small enough to optimize focusing, large enough to preserve target
  - ➤ Pulse length: short enough to allow short horn current pulses, long enough to preserve target
  - > Stability: errant pulses can distort neutrino spectrum and destroy equipment
  - Losses must be kept very low in transfer lines, or more extensive shielding is required
- Single-turn extraction with tight beam optics is usually optimal
  - ➤ Larger emittances must be compensated by stronger focusing

# Challenge: Proton Beam

• SNS & NuMI proton beams to scale:

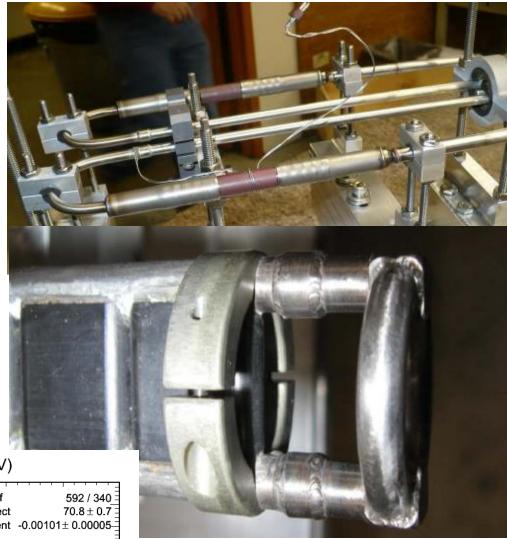


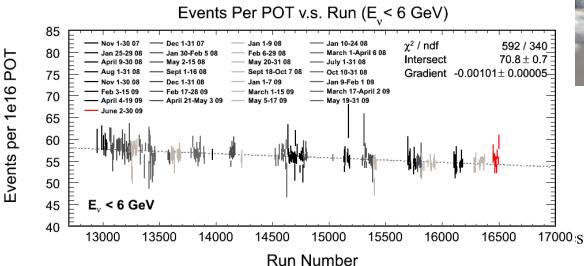
- 200 mm x 70 mm vs. 1.1 mm x 1.1 mm
  - > SNS target experience is not directly transferrable

# Challenge: Targets

#### • Optimal target:

- ➤ Low-Z to optimize pion production (minimize energy deposition in target & horn)
- ➤ High density to stay within the Horns' depth of focus
- ➤ Roughly two nuclear interaction lengths long
- > The optimized width to allow a certain amount of reinteraction, but limit absorption
- But, the target must survive for a non-negligible duration
  - ➤ Material must withstand thermomechanical shock
  - Material must withstand radiation damage
  - > Heat must be removed
  - Supporting materials (e.g. water & pipes) must be far enough from the beam to avoid boiling
- Above contradictions drive us to graphite & beryllium
  - ➤ Water cooling is the baseline, but air is not out of the question
  - > **R&D** has a substantial capability to improve the efficiency of neutrino production



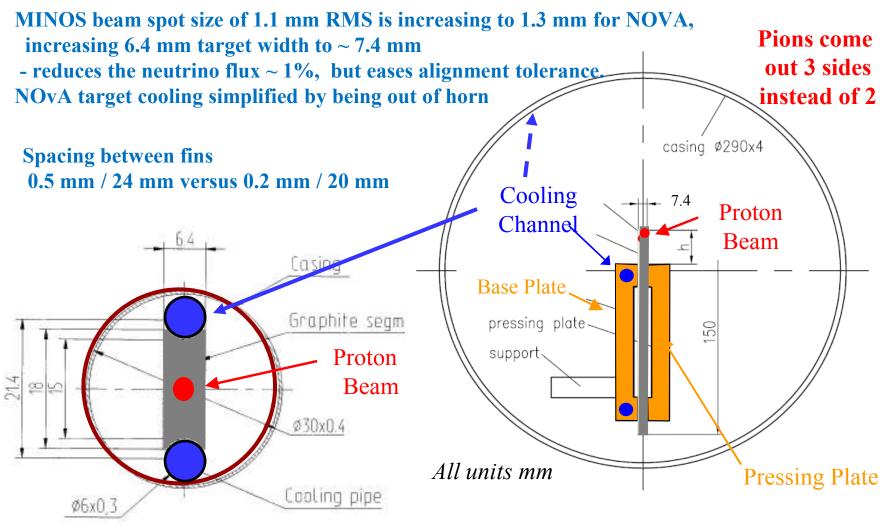


# Experience with MINOS targets

|                             | Max.<br>Proton/pulse        | Max.<br>Beam Power | Integrated Protons on Target           |
|-----------------------------|-----------------------------|--------------------|----------------------------------------|
| Target Design specification | 4.0e13 p.p.p.<br>at 120 GeV | 400 kW             | 3.7 e20 p.o.t. or 1yr minimum lifetime |
| NT-01                       | 3.0 e13                     | 270 kW             | 1.6 e20                                |
| NT-02                       | 4.0 e13                     | 340 kW             | 6.1 e20                                |
| NT-03                       | 4.4 e13                     | 375 kW             | 3.1 e20                                |
| NT-04                       | 4.3 e13                     | 375 kW             | 0.2 e20                                |
| NT-05                       | 4.0 e13                     | 337 kW             | 1.3 e20                                |
| NT-06                       | 3.5 e13                     | 305 kW             | 0.2 e20                                |
| NT-01 rerun                 | 2.6 e13                     | 228 kW             | 0.2 e20                                |
| NT-02 rerun                 | 3.8 e13                     | 330 kW             | 0.4 e20                                |
| NT-07                       | 4.0 e13                     | 345 kW             | 2.5e20                                 |

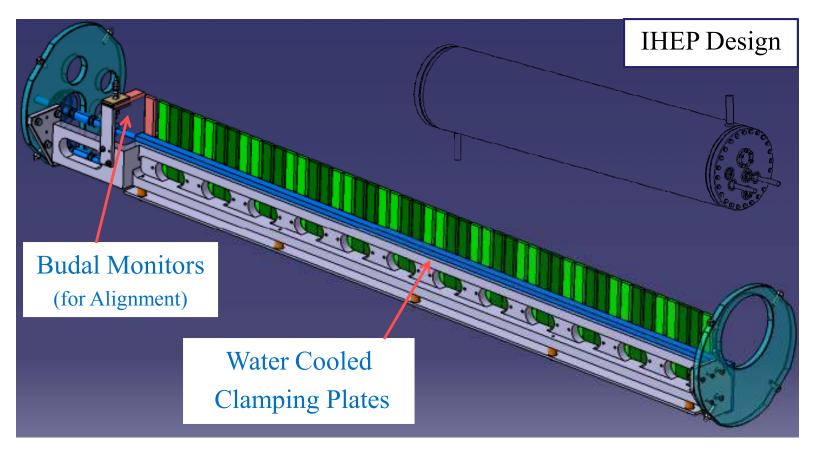
## Target Issues

- Predominant failure mode was cooling
  - > Also an issue for horns
  - ➤ Many lessons were learned in design and in quality control
- NOvA target is more robust in its design
  - Made possible by being outside of the horn.
- Graphite degradation was observed on one target
  - ➤ May ultimately limit the performance of the material






# MINOS / NOVA / LBNE Targets


|                              | NUMI / MINOS    | NUMI /<br>NOVA | LBNE           |
|------------------------------|-----------------|----------------|----------------|
| Distance to far detector     | 735 km          | 810 km         | 1300 km        |
| Desired n energy             | 1 to 15 GeV     | 2 GeV          | 0.8 & 2.7 GeV  |
| Detector Off-beam-axis angle | 0               | 14 mrad        | 0              |
| Design beam power            | 400 kW          | 700 kW         | 700 kW initial |
| Energy per proton            | 120 GeV         | 120 GeV        | 120 GeV        |
| Number of horns              | 2               | 2              | 2              |
|                              |                 |                |                |
| Target length                | 0.95 m          | 1.2 m          | 1 m            |
| Distance between target      | 1.6 m to -0.6 m | 0.2 m          | -0.95 m        |
| downstream end and horn      | (Variable)      | (Not in horn)  | (In horn)      |
|                              |                 |                |                |
| Protons/spill                | 4.4 E13 max.    | 4.9 E13        | 4.9 E13        |
| Repetition rate              | 2.2 sec         | 1.33 sec       | 1.33 sec       |

Bob Zwaska – Fermilab NOvA Summer Seminar Series

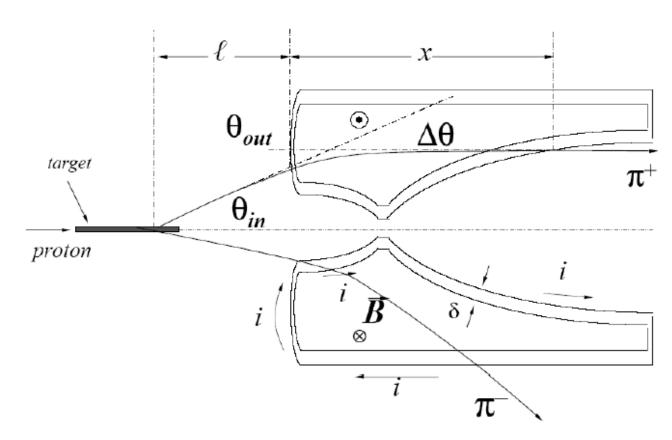
# MINOS & NOvA Target Comparisons



#### **NOVA** Target

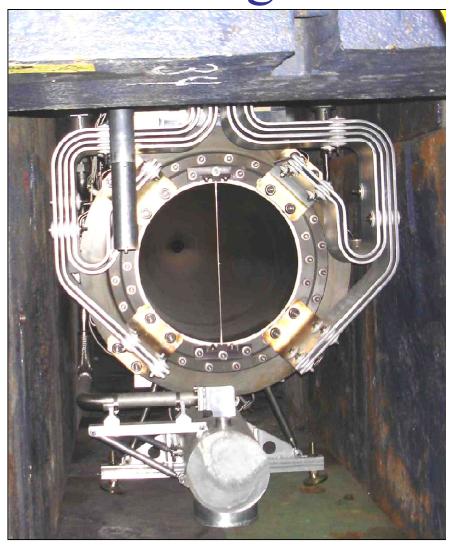


Nominal max. beam power 700 kW


## NOvA Target Production

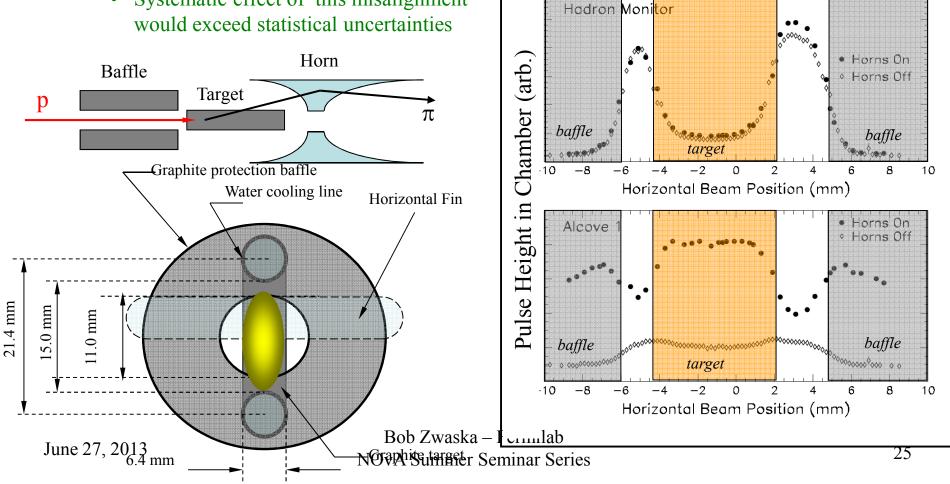
- Proceeding with two construction paths:
  - > 1st target built @ RAL
  - > One each under construction at RAL & Fermilab
- Hope to have a target lifetime of  $\sim 1$  year




# Horn focusing

- Current sheet flows along large inner and outer conductors to forma toroidal magnetic field
  - > Focuses in both planes
  - > Particles pass through the conductor material




# Challenge: Horn Focusing

- Horns have a limited depth of focus
  - For a particular momentum in NuMI, roughly:
    - $\pm$  5 mm transversely
    - $\pm 15$  cm longitudinally
  - $\triangleright$  Target is much longer in z!
    - Not so bad: want a broad energy spectrum
  - ➤ Horn shapes and schemes can be optimized, even augmented by alternative focusing methods
- Horn currents are limited by ohmic and beam heating (~ 200 kA)
  - ➤ Higher currents would allow more efficient focusing
- Horn materials cause absorption and heating
  - > Presently aluminum
  - > Beryllium is an R&D option



#### Challenge: Precision NuMI Target Alignment

- Proton beam scanned horizontally across target and protection baffle
- Hadron Monitor used to find the edges
  - Measured small ( $\sim$ 1.2 mm) offset of target relative to primary beam instrumentation.
  - Systematic effect of this misalignment would exceed statistical uncertainties



# Why was the Target Misaligned?

- Aimed at the target by using correctors and 2 BPMs, 10 & 20 m upstream
  - ➤ BPM precision better than 0.1 mm
  - > Everything aligned optically to few tenths of a mm
- Loading of the target hall
  - ➤ Shielding piled on top after the optical survey this can be corrected
- Thermal deviation
  - ➤ Stations are fixed at different locations, move relative to eachother as temperatures change
  - > Much more difficult to reduce



# These Issues are Everywhere

• Gate at the top of my stairs installed in summer



June 27, 2013

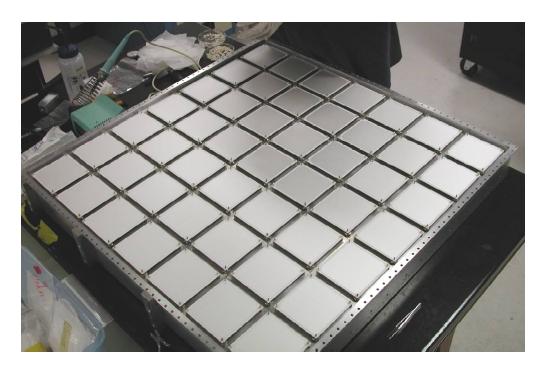
**NOvA Summer Seminar Series** 

# Tight Closure



June 27, 2013

NOvA Summer Seminar Series


# Misaligned by ~ 2 mm

- Change of seasons in a temperature-controlled building caused a misalignment of 2 mm
  - ➤ Will not close in winter!
- This difference accumulated over only 1 m of span
  - > Here, it is a safety issue!
- We are fortunate we only had ~
   1 mm to deal with in NuMI



# Challenge: Instrumentation

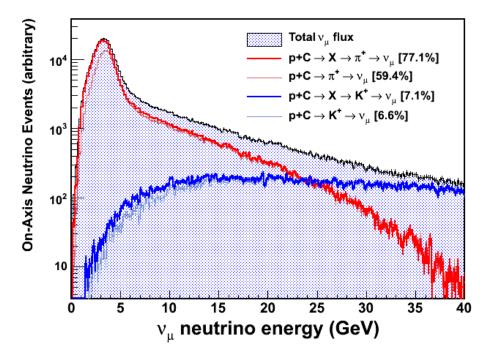
- Instrumentation can be used to measure beamline variations and to reduce the experimental limitations from them
- This instrumentation often needs to live within the secondary beam
  - > Radiation-hard
  - > Large signals
  - Cooling
- **R&D** on instrumentation would improve the precision of neutrino experiments

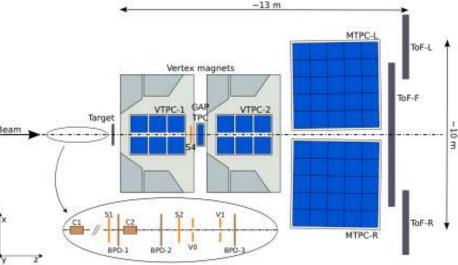


#### A Note on Near Detectors

• Differential Neutrino Event Spectrum:

$$n(E_R) = \int dE_T \phi(E_T) \sigma(E_T) \varepsilon(E_R; E_T)$$


- > Depends on flux, cross section, and efficiency
  - Each has uncertainty
- A near detector reduces the uncertainty
  - ➤ Measures event spectrum at near location
    - Unfolding the cross sections and efficiencies gives the flux at near location
    - MC gives flux differences between detector locations
      - Less uncertain than absolute flux
    - Refold with far cross sections and efficiencies
  - > Works best if detectors are the same
- For fashionable detector technologies (water, argon) the near detector must be substantially different than the far
- Conclusion: a near detector helps, but is not a panacea
  - > Flux modeling crucial
  - > Better cross section & efficiency knowledge helps


# Challenge: Beam Modeling

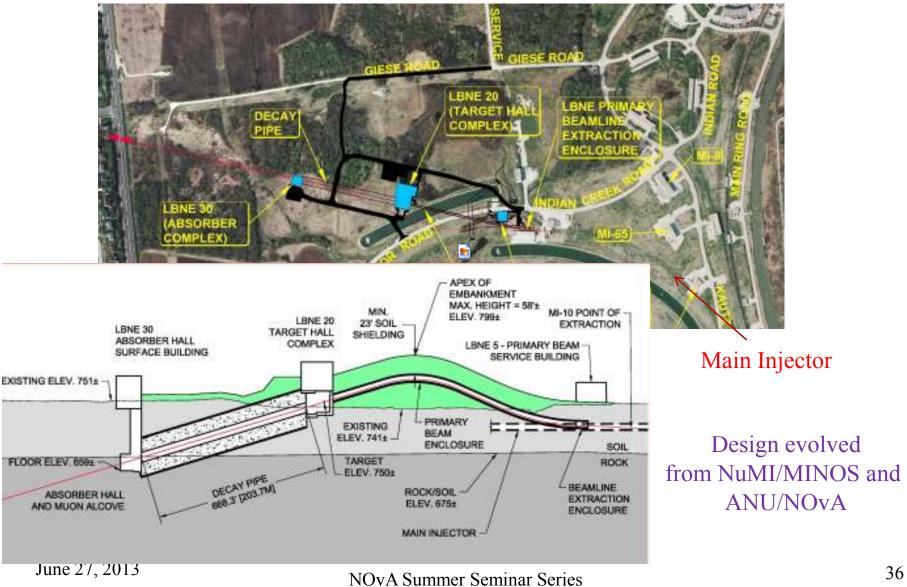
- Modeling by hand from measured production cross sections falls well short in the required accuracy
- MC hadroproduction codes are used:
  - ➤ **GEANT:** gold standard, open code, but hadroproduction is tuned more for showers
  - ➤ FLUKA: best data agreement with neutrino experiments, but closed code trust is not universal
  - ➤ MARS: well-used at Fermilab and good data agreement, but not a fully-available code and parts are closed
- GEANT is the most trusted code, but least accurate
- Effort is needed to tune codes and make them more useful
  - This does limit neutrino experiments

# Challenge: Hadroproduction

- Simulations give a spectrum
  - > But, what is the uncertainty?
- Hadroproduction experiments can constrain simulations, or directly give input to experiments' flux estimation
- Presently, NA-61 at CERN is exploring hadroproduction
  - Gradual series of measurements not an exhaustive program
  - Some detector limitations mean that some important distinctions in parameter space can't be made
- Solution: a dedicated, exhaustive program of hadroproduction measurements could dramatically improve neutrino beam simulation

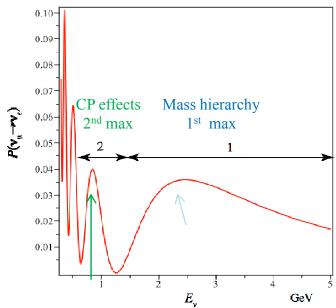


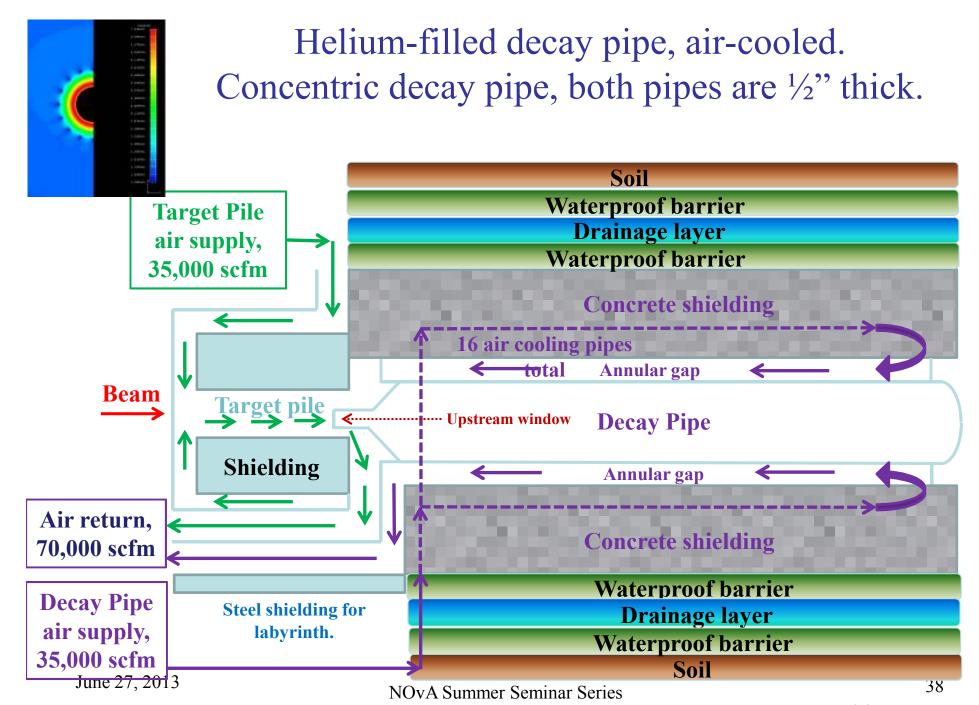



#### Challenge: Radiation/Radionuclide Management

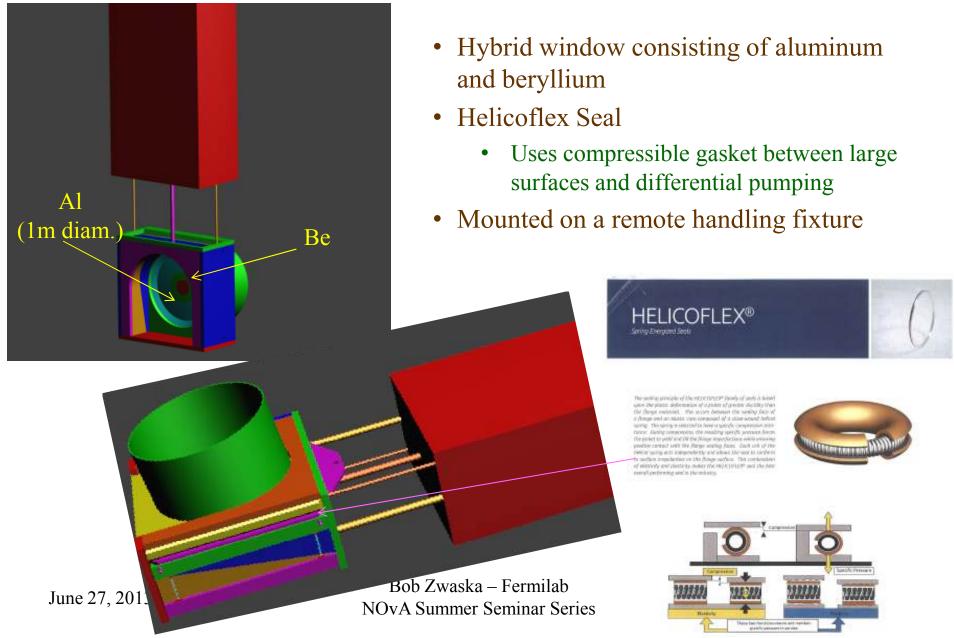
- Shielding is not exciting
- But, it can drive the cost
- LBNE design has an ocean of concrete, an expensive hydro-control system, and a closed air-cooling system
- Substantial cost-savings could be realized if more efficient shielding or management systems could be proven to be adequate
- Issues:
  - > Penetration of radiation
  - > Migration of radionuclides
  - > Radiation-induced corrosion




#### The Future

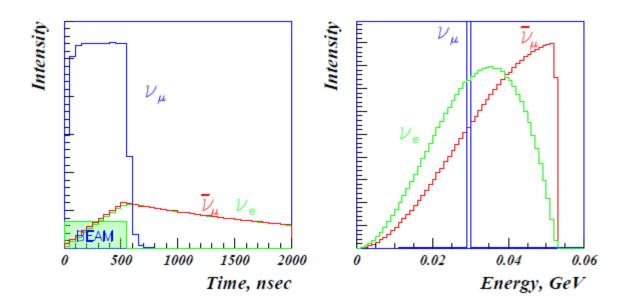

# LBNE Beamline Reference Design




#### Beamline Requirements & Assumptions

- The driving physics considerations for the LBNE Beamline are the long baseline neutrino oscillation analyses.
- Wide band, sign selected beam to cover the 1<sup>st</sup> and 2<sup>nd</sup> oscillation maxima. Optimizing for  $E_{\nu}$  in the range 0.5 5.0 GeV.
- The primary beam designed to transport high intensity protons in the energy range of 60-120 GeV to the LBNE target (focusing on 120 GeV).
- Start with a 708 kW beam (ANU/NOvA at 120 GeV), and then be prepared to take profit of the significantly increased beam power (~2.3 MW) available with Project X allowing for an upgradability of the facility.






# Replaceable Decay Pipe Window

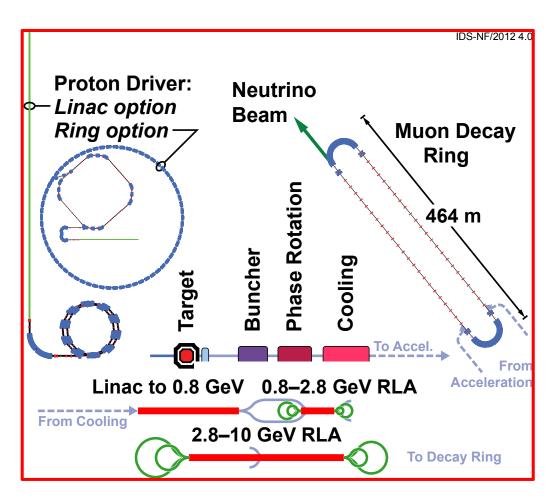


## Decay at Rest "Beams"

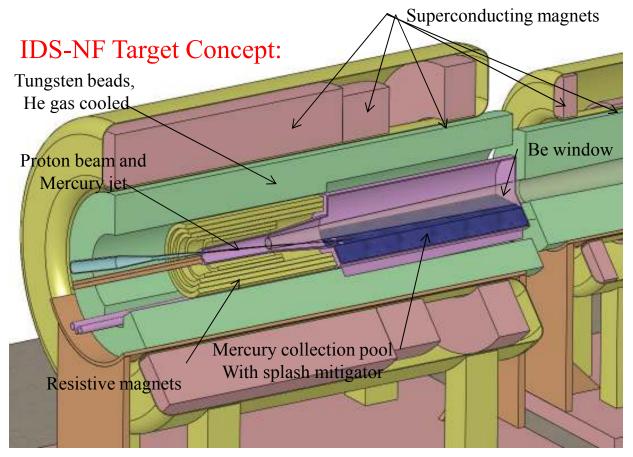
- Create copious pions from a high-energy proton beam
  - > Stop them all in a target
  - $\triangleright$  Most  $\pi$  absorbed into nuclei
  - $\triangleright \pi^+$  decay subsequent  $\mu^+$  also decay
- Produced "beam" is isotropic and consists of three flavors
  - ➤ Muon neutrinos are below the threshold for muon production
  - ➤ Primary search is the appearance of anti-electron-neutrinos through positron production
- Basis for LSND, and proposed for future experiments



June 27, 2013


#### Neutrino Factories

Produce muon beams to decay into neutrinos


$$\mu^{+} \rightarrow e^{+} \overline{\nu}_{\mu} \nu_{e}$$

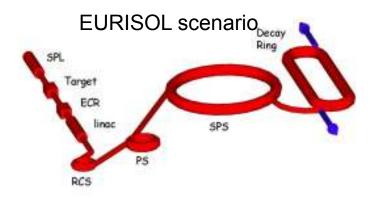
$$\mu^{-} \rightarrow e^{-} \nu_{\mu} \nu_{e}$$

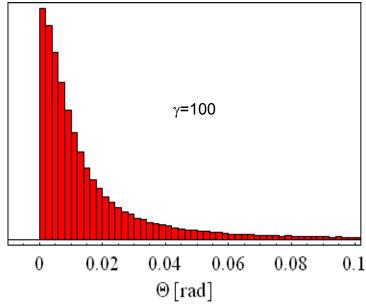
- Primary search is muon-neutrino appearance
  - Requires detector to have excellent muon charge discriminations
- Many technical challenges
  - ➤ Multi-MW primary beam in very small bunches
  - > Target / focusing system
  - ➤ Unique/enormous magnets
  - Cooling the muons to fit into a decay ring
  - > Extremely rapid acceleration
  - Messy decay ring
- All the above makes this very interesting to look at



## NF Target Station

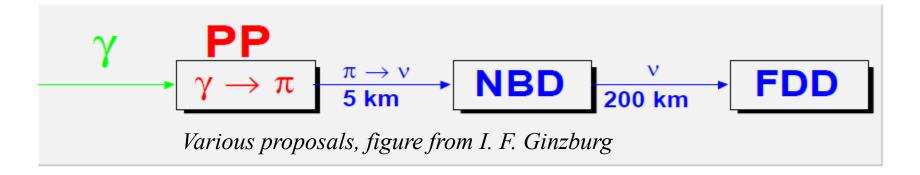



Shielding of the superconducting magnets from radiation is a major issue.


Magnet stored energy ~ 3 GJ!

Bob Zwaska – Fermilab NOvA Summer Seminar Series

#### Beta Beams


- Accelerate unstable nuclei to  $\gamma = 100$ 500
  - > Typical lifetimes of minutes
  - > Simplifies collections and acceleration
- Beta-decay electron- neutrinos of several MeV in rest frame
  - > Boost brings it to useful energies
  - > Search for muon-neutrino appearance
  - ➤ Small Q produces a more focused beam
- Beam is pure!
  - ➤ No muon contamination, except from showers of decay nuclei
- Ions of choice: <sup>6</sup>He and <sup>18</sup>Ne
- Not currently receiving much attention: making the ions in sufficient quantity is just too difficult





#### Electron Produced Beams

- Use ILC-like waste beams
  - ➤ 10s of MW of electron/positron power
  - Convert leptons to brehmsstrahlung photons
- Photonuclear reactions to produce pions, Lambdas, etc.



 Not the most efficient way to produce a neutrino beam, but a good use of already-existing beam, if it exists

#### Conclusion

- Neutrino beams have been used for over 50 years
  - ➤ Oscillations are only the latest application
- Neutrino beams are now high-power and high-precision
  - > Verging on MW beams
  - > Precision demands continue to increase
- Numerous challenges to be addressed moving forward
  - > Numerous potential innovations that can make an impact

#### How to Make a Neutrino Beam

Robert Zwaska Fermilab

June 27, 2013 NOvA Summer Seminar Series